技術文章
Technical articles
熱門搜索:
摩方精密3D打印
2微米高精度微納3D打印系統(tǒng)
microArch S240A10μm高精度微納3D打印
器官芯片3d打印
nanoArch P14010μm精度微納3D打印系統(tǒng)
nanoArch S1302μm精度微納3D打印系統(tǒng)
微納陶瓷3D打印
nanoArch S14010μm精度微納3D打印系統(tǒng)
科研3D打印機
nanoArch P15025μm高精密3D打印系統(tǒng)
3D打印微針
微流控芯片3D打印
精密連接器3D打印
nanoArch S1403d打印精密醫(yī)療內(nèi)窺鏡
10微米高精度微納3D打印系統(tǒng)
光固化3D打印
隨著通信技術的快速發(fā)展,近些年的通信容量實現(xiàn)了快速增長,傳統(tǒng)的光纖通信網(wǎng)絡已經(jīng)難以滿足當前高速通信的需求。增大通信網(wǎng)絡的容量和提高通信速度的一種方法是開發(fā)太赫茲(Terahertz,THz)波段的光纖通信空間維度。太赫茲波是介于微波和紅外光之間的一種電磁波,頻率介于0.1THz到10THz之間,由于它帶寬大和傳輸速度快以及可以提供點對點的網(wǎng)絡拓撲結構而備受關注。而在空間維度資源中,基于軌道角動量(OrbitalAngularMomentum,OAM)的模分復用技術由于攜帶不同...
擁有主動變形能力的三維可變形結構在自然界中廣泛存在,可有效提高生物對復雜環(huán)境的適應性。受這一特性啟發(fā),研究人員已開發(fā)了多種基于水凝膠、液晶高分子、硅膠彈性體等的軟材料體系,在外界不同條件的刺激下(如化學溶劑、溫度、酸堿度、光等),實現(xiàn)了各式三維結構的可控形貌變換(Nature2021,592,386;Nature2019,573,205;Nature2017,546,632)。但是,目前已有的方案主要基于軟材料形貌的準靜態(tài)調(diào)制,如何實現(xiàn)多種尺度下多模態(tài)各向異性形貌與結構的動態(tài)...
高精密增材制造融合了計算機輔助設計、材料加工與成型技術、以數(shù)字模型文件為基礎,通過軟件與數(shù)控系統(tǒng)將專用的金屬材料、非金屬材料以及醫(yī)用生物材料,按照擠壓、燒結、熔融、光固化、噴射等方式逐層堆積,制造出實體物品的制造技術。高精密增材制造簡化了供應鏈。在小規(guī)模操作中,它與計算機和3D打印機一樣重要,可以大大縮短制造過程的時間,你幾乎可以創(chuàng)建各種尺寸的幾何形狀,從可以在幾小時內(nèi)打印的小物體到需要數(shù)天才能完成的設計。正是這種靈活性使增材制造受益。相對于傳統(tǒng)的、對原材料去除-切削、組裝的...
脂質(zhì)體是一種由磷脂分子在水相中自組裝形成的球狀泡囊體。脂質(zhì)體具有良好的生物兼容性和低免疫原性,能夠保護藥物不被降解,是一種極.具前景的藥物遞送載體。近年來,脂質(zhì)體已經(jīng)被廣泛應用于腫瘤免疫治療、基因治療、多模態(tài)分子影像等領域。相比于常規(guī)的脂質(zhì)體,靶向脂質(zhì)體能夠有效地改善藥物的細胞攝取以及靶向富集能力,能夠顯著地提升藥物遞送效率。但是,常用的制備靶向脂質(zhì)體的方法正面臨著一些挑戰(zhàn),例如,操作復雜、耗時久、批次差異性大等問題。近期,中南大學湘雅醫(yī)院皮膚科、中南大學機電工程學院等研究團...
血栓癥是一種常見的血管內(nèi)疾病,具有多種臨床表現(xiàn)和并發(fā)癥,例如心梗、中風及肺栓塞等,嚴重危害病人的生命健康及生活質(zhì)量。傳統(tǒng)治療方案常先通過注射溶栓藥物或導管介入技術去除血栓,接著使用抗凝藥物預防二次堵塞。然而溶栓藥物缺乏靶向性,無法主動在血栓部位富集,且高濃度的藥物易引發(fā)內(nèi)出血和血壓波動,因此難以高效安全地完成去除血栓的任務。導管介入技術則對操作者的經(jīng)驗和判斷能力要求較高,操作不當容易損傷血管,甚至造成二次堵塞。近年來,小尺度機器人系統(tǒng)在狹窄閉塞的生物環(huán)境中展現(xiàn)出令人矚目的應用...
科研3D打印機是可以“打印”出真實的3D物體的一種設備,比如打印一個機器人、打印玩具車,打印各種模型,甚至是食物等等。之所以通俗地稱其為“打印機”是參照了普通打印機的技術原理,因為分層加工的過程與噴墨打印十分相似。這項打印技術稱為3D立體打印技術。3D打?。?DP)即快速成型技術的一種,它是一種以數(shù)字模型文件為基礎,運用粉末狀金屬或塑料等可粘合材料,通過逐層打印的方式來構造物體的技術??蒲?D打印機通常是采用數(shù)字技術材料打印機來實現(xiàn)的。常在模具制造、工業(yè)設計等領域被用于制造模...
液滴的高效抓取和無損釋放在醫(yī)學中的藥物融合或靶向轉移、冷凝器表面或芯片實驗室熱耗散等領域有著重要的應用。目前,液滴轉移往往由兩個具有不同粘附性的表面去實現(xiàn),即將液滴從低粘附浸潤表面轉移至高粘附浸潤表面,且液滴的無損、自由釋放較難實現(xiàn)。最近,北京理工大學*結構技術研究院陳少華、劉明課題組設計并制備了一種新型的多級微結構仿生功能表面,可利用同一表面實現(xiàn)液滴的高效抓取和無損釋放。該表面由磁顆粒填充的微尺度平板陣列結構組成,微平板尺寸為5mm×0.12mm×1mm,每個微平板左右兩側...
是什么讓蜘蛛俠能夠飛檐走壁?又是什么讓年逾50的阿湯哥只身一人攀爬世.界.第.一高樓-——哈利法塔?盡管這些是科幻電影中的片段,但現(xiàn)實生活中早已有活生生的例子:壁虎。該生物不僅在潔凈基底上具有超.強黏附力,同時在沾滿灰塵的表面依舊能夠自由爬行,表明其黏附系統(tǒng)具有“自清潔”功能。有研究指出,壁虎之所以具有如此優(yōu)異的功能是因為其腳趾具有成千上萬的鏟狀絨毛。圖1.壁虎腳掌黏附系統(tǒng)的結構近日,受壁虎行為啟發(fā),北京理工大學*結構技術研究院的陳少華教授課題組提出了一種仿生微柱功能表面通過...